“战略性关键金属超常富集成矿动力学”重大研究计划于2019年启动实施,周期8年,资助经费2亿元。
该重大研究计划以国家重大需求作为核心牵引,瞄准关键性矿产资源所拥有的战略价值和科学价值,提炼和把握关键金属成矿的重大科学问题,实现矿床学研究的新突破,推动地球科学发展。
该重大研究计划的指导专家组组长由南京大学陈骏院士担任,拟解决的核心科学问题是低丰度金属元素超常富集成矿过程与驱动机制。围绕核心科学问题,该重大研究计划的组织实施将针对以下3个关键科学问题展开:
地球多圈层相互作用与关键金属元素富集。关键金属在地壳的丰度非常低,关键金属矿床是元素超常富集的特殊地质体。关于关键金属元素地球化学行为的研究程度整体上偏低,关键金属元素在多圈层相互作用过程中的地球化学行为和富集过程是亟待解决的科学问题。
关键金属元素成矿机制与规律。矿床的形成是多个地质-物理-化学作用的综合结果,查明关键金属矿床特征、分布规律及控制关键金属矿床形成的地质-物理-化学过程,是理解关键金属元素成矿规律与形成机制的关键。
关键金属元素赋存状态与强化分离机理。关键金属元素常伴生主要成矿元素在一些特定矿床中相对富集而具有开采和综合利用价值,但需要揭示关键金属元素共生分异规律,明确不同关键金属元素共伴生富集成矿的主要控制因素。而基于元素赋存状态和矿物学的强化分离机理及调控机制研究,是实现关键金属复杂矿产资源高效清洁利用的基础与关键。
该重大研究计划的总体科学目标是:揭示关键金属超常富集成矿的苛刻条件,建立关键金属超常富集成矿理论,实现成矿理论突破;揭示关键金属成矿规律,确定关键金属元素矿产新的类型,实现指导找矿突破;查明微观尺度关键金属元素赋存状态,攻克关键金属强化分离理论瓶颈,实现分离理论突破。
图1 关键金属种类
元素 | 地壳丰度 | 矿石工业品位 | 成矿富集倍数 | 选冶富集倍数 |
铍(Be) | 1.9 ppm | 0.1% BeO | 156 | 2700 |
铁(Fe) | 5.05% | 30% 全铁 | 6 | 3 |
图2 关键金属(铍)超常富集和大宗金属(铁)正常富集
Extreme Enrichment and Ore-forming Dynamics of Strategic and Critical Metals
The Major Research Plan of “Extreme Enrichment and Ore-forming Dynamics of Strategic and Critical Metals” has been launched at 2019. Its research period is 8 years and the total budget is 200 million RMB.
This major Research Plan meets the nation’s demands and aims at the strategic- science value of critical mineral resource. It refines the key issues of the critical mineralization and will achieve a breakthrough of ore deposit geology and will promote the development of Earth Science.
Academician Chen Jun from Nanjing University is in charge of the steering group. This plan is to solve the core scientific issue of “Extreme Enrichment and Driving Mechanism of Ultra-low Abundance Metal Elements”, including three key issues as following.
Interaction among earth’s multi-system and enrichment of critical metal elements. The study in the geochemical behavior of critical metal elements is still low. Their geochemical behavior and enrichment in multi systems have to be settled urgently.
Metallogenic mechainsm and regularity of critical metal elements. The ore deposits by combined action of geological- physical- chemical process. To identify the characteristic and distribution of the critical metal deposit, to make clear the controlling of their formation, would be a crux to further understanding of metallogenic mechanism and forming regularity.
Occurrence of critical metal elements and respective strengthening separation. The critical metal elements are always associated with the main elements and are worthy of mining and utilization in some specific deposits. It is necessary to firstly reveal the symbiotic differentiation and to clarify the main controlling factors. The research of strengthening separation and regulatory mechanism are essential to efficient and clean utilization of complex mineral resources.
The overall scientific objectives of this plan are: (1) revealing the harsh condition for extreme enrichment of critical metal elements, establishing the theory of extreme enrichment mineralization, to achieve the breakthrough in metallogenic theory; (2) revealing the mineralization regularity of critical metals, recognizing new critical deposit type, to achieve the breakthrough in guiding ore prospecting; (3) identifying the microscale occurrence of critical metals, conquering the bottleneck of strengthening separation, to achieve the breakthrough in separation theory.
Figure 1 Type of Critical Metals
Element | Crustal Abundance | Ore industrial grade | Mineralization Enrichment Multiple | Smelting Enrichment Multiple |
Beryllium (Be) | 1.9 ppm | 0.1% BeO | 156 | 2700 |
Iron(Fe) | 5.05% | 30% Total iron | 6 | 3 |
Figure 2 Extreme enrichment of critical metal (Be) and normal enrichment of bulk metal (Fe)